Structure of the Germacrane Furanosesquiterpenoid Linderane

By Kenji Okada \dagger
Research and Development Center, Ricoh Co. Ltd, Kouhoku-ku, Yokohama 223, Japan
and Hirozo Koyama
Research Institute for Science and Technology, Kinki University, 3-4-1 Kowakae, Higashi Osaka 577, Japan

(Received 5 December 1991; accepted 2 June 1992)

Abstract

S} S\right.\)-(1a $\left.\left.R^{*}, 4 E, 10 R^{*}, 10 \mathrm{a} R^{*}\right)\right]$-3,6,10,10a-Tetrahydro-5,9-dimethyl-2H-10,1a-(epoxymethano)-oxireno[4,5]cyclodeca[1,2-b]furan-12-one, $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4}$, $M_{r}=260.3$, orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=13.633$ (3), b $=9.102$ (2), $c=10.153$ (2) $\AA, V=1259.8$ (4) $\AA^{3}, Z=$ $4, \quad D_{x}=1.373 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.7107 \AA, \quad \mu=$ $0.93 \mathrm{~cm}^{-1}, F(000)=552, T=295 \mathrm{~K}, R=0.057, w R$ $=0.052$ for 1088 observed reflections $[I \geq \sigma(I)]$. The molecule consists of a macrocyclic ten-membered ring and its fused associated epoxide, furan and γ-lactone rings. The conformation of the tenmembered ring is such that the methyl group and γ-lactone ring lie syn on the α face of the molecule, and $\mathrm{C} 4-\mathrm{C} 5$ and $\mathrm{Cla}-\mathrm{Cl} 10 \mathrm{a}$ (IUPAC numbering) bonds are in a crossed orientation. The γ-lactone ring, cis-fused at Cla and C 10 , is approximately perpendicular to the mean plane of the tenmembered ring $\left[85.8(2)^{\circ}\right]$ and the epoxide ring makes an angle of 103.1 (4) ${ }^{\circ}$ with the γ-lactone ring. The plane of $\mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 6$ and the methyl C atom on C5 is approximately perpendicular to the tenmembered ring [81.7 (3) ${ }^{\circ}$].

Experimental. Linderane, a germacrane furanosesquiterpenoid isolated from the root of Lindera strychnifolia Vill, can be represented by the formula (I).

(I)

Crystals of (I) were prepared and recrystallized from acetone-light petroleum solution as colorless needles, m.p. $463-464 \mathrm{~K}$, elongated along the b axis. The unit-cell dimensions were obtained by leastsquares refinement of the setting angles of 20 reflec-

[^0]Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$ with e.s.d.'s in parentheses

	$B_{\text {eq }}=(4 / 3) \sum_{i} \sum_{j} \beta_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.			
	x	y	z	$B_{\text {ca }}$
$\mathrm{O}(1)$	0.5940 (3)	0.2435 (4)	0.0860 (4)	3.9 (2)
O(2)	0.6444 (3)	0.6900 (4)	-0.0636 (4)	4.1 (2)
O(3)	0.7580 (3)	0.8593 (5)	-0.0253 (5)	5.2 (2)
$\mathrm{O}(4)$	0.5224 (3)	0.8831 (4)	0.0699 (5)	4.9 (2)
C(1)	0.7060 (4)	0.6583 (7)	0.3015 (6)	3.6 (3)
C(2)	0.7386 (5)	0.8154 (7)	0.3024 (7)	4.5 (3)
C(3)	0.6590 (5)	0.9120 (7)	0.2415 (7)	4.0 (3)
C(4)	0.6169 (4)	0.8383 (6)	0.1196 (6)	3.5 (3)
C(5)	0.5376 (5)	0.7324 (6)	0.1111 (7)	3.7 (3)
C(6)	0.5538 (4)	0.6352 (6)	-0.0030 (7)	3.6 (3)
C(7)	0.5624 (4)	0.4722 (5)	0.0206 (5)	2.9 (2)
C(8)	0.6125 (4)	0.3893 (6)	0.1071 (6)	3.6 (3)
C(9)	0.6779 (6)	0.4102 (8)	0.2231 (8)	4.7 (3)
C(10)	0.7362 (4)	0.5522 (6)	0.2266 (6)	3.1 (2)
C(11)	0.5052 (4)	0.3711 (7)	-0.0588 (6)	3.6 (3)
C(12)	0.5277 (5)	0.2372 (7)	-0.0151 (7)	4.0 (3)
C(13)	0.4335 (6)	0.4076 (9)	-0.1653 (8)	4.7 (4)
C(14)	0.8231 (6)	0.5537 (10)	0.1387 (9)	5.2 (4)
C(15)	0.6824 (4)	0.8040 (6)	0.0050 (6)	3.6 (3)

tions ($5.0 \leq 2 \theta \leq 26.7^{\circ}$) measured on the automatic diffractometer. Intensity data were collected on a Hilger \& Watts automatic four-circle Y 290 diffractometer controlled by a PDP 8 computer. Integrated intensities were measured for $2 \theta<55^{\circ}$ by the $\omega-2 \theta$ scan technique with Mo $K \alpha$ radiation. Three standard reflections $(022,120,201)$ were monitored every 100 reflections and showed no significant variation over the data collection. 1669 independent reflections ($0 \leq h \leq 17,0 \leq k \leq 11,0 \leq l \leq 13$) were recorded, of which 1088 intensities having $I \geq \sigma(I)$ were considered observed. Intensities were corrected for Lorentz and polarization factors. No absorption corrections were applied since the specimen was considered to be sufficiently small $(0.20 \times 0.23 \times$ 0.30 mm).

The structure was solved by direct methods, using the program DIRECTER (Koyama \& Okada, 1975; Okada \& Koyama, 1991) for automatic structure analysis. The H atoms were found on the difference Fourier map. Full-matrix least-squares refinement using the program LSBF (Okada, Okada \& Koyama, 1990; Okada \& Koyama, 1991) decreased
© 1993 International Union of Crystallography

Table 2. Bond distances (\AA), bond angles $\left({ }^{\circ}\right)$ and torsion angles $\left(^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{O}(1)-\mathrm{C}(8) \quad 1.36$	1.367 (7)	$\mathrm{C}(4)-\mathrm{C}(5) \quad 1.45$	0 (8)
$\mathrm{O}(1)-\mathrm{C}(12) \quad 1.36$	1.369 (8)	$\mathrm{C}(4)-\mathrm{C}(15) \quad 1.50$	0 (8)
$\mathrm{O}(2)-\mathrm{C}(6) \quad 1.46$	1.467 (7)	$\mathrm{C}(5)-\mathrm{C}(6) \quad 1.47$	5 (9)
$\mathrm{O}(2)-\mathrm{C}(15) \quad 1.35$	1.353 (7)	$\mathrm{C}(6)-\mathrm{C}(7) \quad 1.50$	8 (8)
$\mathrm{O}(3)-\mathrm{C}(15) \quad 1.18$	1.187 (8)	$\mathrm{C}(7)-\mathrm{C}(8) \quad 1.34$	4 (8)
$\mathrm{O}(4)-\mathrm{C}(4) \quad 1.4$	1.442 (7)	$\mathrm{C}(7)-\mathrm{C}(11) \quad 1.45$	1 (8)
$\mathrm{O}(4)-\mathrm{C}(5) \quad 1.4$	1.448 (7)	$\mathrm{C}(8)-\mathrm{C}(9) \quad 1.48$	9 (10)
$\mathrm{C}(1)-\mathrm{C}(2) \quad 1.4$	1.498 (9)	$\mathrm{C}(9)-\mathrm{C}(10) \quad 1.51$	8 (9)
$\mathrm{C}(1)-\mathrm{C}(10) \quad 1.2$	1.296 (8)	$\mathrm{C}(10)-\mathrm{C}(14) \quad 1.48$	3 (10)
$\mathrm{C}(2)-\mathrm{C}(3) \quad 1.5$	1.526 (10)	$\mathrm{C}(11)-\mathrm{C}(12) \quad 1.33$	3 (9)
$\mathrm{C}(3)-\mathrm{C}(4) \quad 1.5$	1.521 (9)	$\mathrm{C}(11)-\mathrm{C}(13) \quad 1.49$	5 (10)
$\mathrm{C}(8)-\mathrm{O}(1)-\mathrm{C}(12)$	106.3 (5)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	134.1 (5)
$\mathrm{C}(6)-\mathrm{O}(2)-\mathrm{C}(15)$	111.5 (4)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(11)$	119.6 (5)
$\mathrm{C}(4)-\mathrm{O}(4)-\mathrm{C}(5)$	60.2 (4)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(11)$	106.3 (5)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)$	128.4 (6)	$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{C}(7)$	110.4 (5)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	109.7 (6)	$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	111.0 (6)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	110.1 (5)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	138.5 (6)
$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(3)$	119.8 (5)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	116.2 (6)
$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(5)$	60.1 (4)	$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	118.8 (5)
$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(15)$	108.7 (5)	$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(14)$	126.9 (6)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	128.5 (6)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(14)$	114.3 (6)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(15)$	119.9 (5)	$\mathrm{C}(7)-\mathrm{C}(11)-\mathrm{C}(12)$	105.7 (5)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(15)$	105.0 (5)	$\mathrm{C}(7)-\mathrm{C}(11)-\mathrm{C}(13)$	127.8 (6)
$\mathrm{O}(4)-\mathrm{C}(5)-\mathrm{C}(4)$	59.7 (3)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(13)$	126.5 (6)
$\mathrm{O}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	111.3 (6)	$\mathrm{O}(1)-\mathrm{C}(12)-\mathrm{C}(11)$	111.3 (5)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	109.5 (5)	$\mathrm{O}(2)-\mathrm{C}(15)-\mathrm{O}(3)$	121.6 (6)
$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	104.5 (5)	$\mathrm{O}(2)-\mathrm{C}(15)-\mathrm{C}(4)$	109.3 (5)
$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	109.6 (4)	$\mathrm{O}(3)-\mathrm{C}(15)-\mathrm{C}(4)$	129.0 (6)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7) \quad 118.5$ (6)			
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	4) $\quad-42.3$ (7)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(14)$	11.6 (10)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	(5) $\quad 86.6$ (8)	$\mathrm{C}(15)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	0.6 (8)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	- - 150.2 (8)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(2)$	-1.3 (6)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$7) \quad 121.0$ (7)	$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(11)$	2.0 (6)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$) $\quad 46.7$ (9)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(11)-\mathrm{C}(13)$	-1.2 (8)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$) $\quad 4.1$ (11)	$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	156.5 (7)
	(10) - 27.6 (10)	$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(11)$	- 109.2 (6)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(1)$	(1) 101.5 (8)	$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	73.1 (8)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)$	(2) -167.1 (9)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(11)$	131.0 (7)
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	(3) $\quad 106.4$ (8)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(15)-\mathrm{O}(3)$	-23.5 (8)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(14) \quad-77.4$ (8)		$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(15)-\mathrm{O}(2)$	0.4 (7)

and $-0.03 \mathrm{e} \AA^{-3}$. Atomic scattering factors were taken from International Tables for X-ray Crystallography (1974, Vol. IV). All calculations were carried out with an NEC PC-9801RA personal computer using $D S^{*} S Y S T E M$ (Okada, Okada \& Koyama, 1990; Okada \& Koyama, 1991).

Atomic coordinates and equivalent isotropic thermal parameters are given in Table $1 . \dagger$ The configuration of the molecule with atom-numbering scheme is illustrated in Fig. 1, drawn with the version of ORTEPII (Johnson, 1976) included in the $D S^{*} S Y S T E M$. Molecular packing is displayed in Fig. 2. Bond distances, angles and torsion angles are given in Table 2.

Related literature. Linderane of the germacrane type

 has been assigned a structure on the basis of chemical and spectroscopic investigation (Takeda, Minato \& Horibe, 1963). The absolute configuration of the molecule has been determined (Takeda, Horibe, Teraoka \& Minato, 1968, 1969). Most of the observed bond distances and angles of the tenmembered ring are comparable to those observed in the related structures: dihydroelephantopin (Watson, Zabel, Mabry \& Yabuta, 1982), tanacetols A and B (Calleri, Chiari \& Viterbo, 1983), shiromodiol 8-Oangelate (Appendino, Calleri \& Chiari, 1986) and shiromodiol 6-O-acetate 8-O-p-bromobenzoate (Sim, 1987). The torsion angles of the ten-membered ring are similar to those in dihydroelephantopin and costunolide (Bovill, Cox, Cradwick, Guy, Sim \& White, 1976), though $\omega^{6-7}, \omega^{7-8}$ and ω^{8-9} are shifted. The transannular distance $C(1) \cdots C(5)[3.075(9) \AA$] is considerably less than the sum of the van der Waals radii [$3.40 \AA$], as seen in shiromodiol $8-O$-angelate. The $\mathrm{C}-\mathrm{C}$ bond distance $[1.450(8) \AA$] in the epoxide

Fig. 2. A stereodiagram of the linderane molecules in the unit cell, drawn with the version of PLUTO78 (Motherwell \& Clegg, 1978) included in $D S^{*} S Y S T E M$ (Okada, Okada \& Koyama, 1990; Okada \& Koyama, 1991).
ring is shorter than expected for a single bond (1.552-1.560 \AA) and hence may be inferred to show partial double-bond character. The angle $\mathrm{C}(7)$ -$\mathrm{C}(8)-\mathrm{C}(9)\left[138.5(6)^{\circ}\right]$ is an indication of strain imposed at the junction between the furan ring and the ten-membered ring.

The authors thank Dr K. Takeda for suggesting this investigation and Dr H . Minato for the preparation of suitable crystals.

References

Appendino, G., Calleri, M. \& Chiari, G. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 205-209.
Bovill, M. J., Cox, P. J., Cradwick, P. D., Guy, M. H. P., Sim, G. A. \& White, D. N. J. (1976). Acta Cryst. B32, 3203-3208.

Calleri, M., Chiari, G. \& Viterbo, D. (1983). Acta Cryst. C39, 758-761
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Koyama, H. \& Okada, K. (1975). Acta Cryst. A31, S18.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Okada, K. \& Koyama, H. (1991). J. Appl. Cryst. 24, 1067-1070.
Okada, K., Okada, S. \& Koyama, H. (1990). Acta Cryst. A46, C-70.
Sim, G. A. (1987). Acta Cryst. C43, 1306-1307.
Takeda, K., Horibe, I., Teraoka, M. \& Minato, H. (1968). Chem. Commun. p. 637.
Takeda, K., Horibe, I., Teraoka, M. \& Minato, H. (1969). J. Chem. Soc. C, pp. 1491-1495.
Takeda, K., Minato, H. \& Horibe, I. (1963). Tetrahedron, 19, 2307-2316.
Watson, W. H., Zabel, $^{\text {V., Mabry, T. J. \& Yabuta, G. (1982). }}$ Acta Cryst. B38, 511-514.

Structure of 3-Benzoylamino-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydrocoumarin

By Ivan Leban, Marjan Kočevar and Bojan Verček
Department of Chemistry and Chemical Technology, University of Ljubljana, 61001 Ljubljana, POB 537, Slovenia

(Received 13 January 1991; accepted 21 April 1992)

Abstract

C}_{18} \mathrm{H}_{\mathrm{t}} \mathrm{NO}_{4}, \quad M_{r}=311.34\), monoclinic, $P 2_{\mathrm{I}} / n, a=6.782$ (2), $b=18.496$ (3), $c=12.439$ (3) \AA, $\beta=99.34(1)^{\circ}, \quad V=1539.7$ (8) $\AA^{3}, \quad Z=4, \quad D_{x}=$ $1.343 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71069 \AA, \quad \mu=$ $0.890 \mathrm{~cm}^{-1}, F(000)=656, T=293$ (2) K, final $R=$ 0.044 and $w R=0.063$ for 1821 observed reflections. The overall shape of the molecule is planar. The dihedral angle between the phenyl ring and the planar part of the coumarin group is $6.0(7)^{\circ}$. The bond lengths and angles agree with expected values. This derivative of coumarin is a valuable material in the synthesis of the novel heterocyclic system $2 H$,$5 H$-pyrano $[3,2-c]$ azepine and its derivatives.

Experimental. Plate-like colourless single crystal, 0.45 $\times 0.35 \times 0.20 \mathrm{~mm}$, sealed in glass capillary. Cell dimensions were determined from the angular settings of 25 reflections with $10<\theta<12^{\circ}$ measured on an Enraf-Nonius CAD-4 diffractometer. Space group $P 2_{1} / n$ was determined from the systematic absences. Intensity data were collected in the range 1 $<2 \theta<56^{\circ}$ with variable-speed $\omega-2 \theta$ scans using graphite-monochromated Mo $K \alpha$ radiation; max. scan time 60 s , scan width $(0.8+0.3 \tan \theta)^{\circ}$, background measured for 0.25 of scan time at each scan
limit. Three reflections were monitored every 300 reflections. Orientation was checked every 2 h . Data were corrected for intensity variation (-3.4%) and Lp effects; absorption was ignored. 7421 reflections $(\pm h, \pm k,+l)$ were collected. On averaging ($R_{\mathrm{int}}=$ $2.8 \%), 1821$ reflections were considered observed [I $>3 \sigma(I) ; \sigma(I)$ based on counting statistics] out of 3481 unique reflections; range of $h k l: h-8$ to $8, k 0$ to $24, l 0$ to 16 . The structure was solved with MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980). The initial structural model was refined by full-matrix least squares, minimizing the function $\sum w\left(\left|F_{o}\right|-\mid F_{c}\right)^{2}$ with SHELX76 (Sheldrick, 1976). Final R and $w R$ values were 0.044 and 0.063 , respectively, with $w=$ $1.0 /\left[\sigma^{2}\left(F_{o}\right)+0.0094\left(F_{o}\right)^{2}\right]$ and 209 variables; H-atom positions were found in the final difference synthesis and included in the refinement with constraint imposed only on the $\mathrm{C}-\mathrm{H}$ bonds. A common isotropic displacement parameter U for all H atoms was 0.077 (2) \AA^{2}. A final difference Fourier map showed residual electron density within +0.18 and $-0.31 \mathrm{e} \AA^{-3} .(\Delta / \sigma)_{\max }$ at convergence was 0.011 (overall scale factor). Scatering factors for C, N and O atoms were taken from International Tables for

[^0]: \dagger Author to whom correspondence should be addressed.

